1. (10 points) Two planes are orthogonal if their normal vectors are orthogonal. Find the equation of a
plane that is orthogonal to the plane 32 — y 4+ 22 = 1 and that contains the points (1,1,2) and (2,2, 1).
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2. Parts (a) and (b) are about a plane and part (c¢) is about a line.

(a) (2 points) Find the distance of the origin from the plane 2z —y — 2z = 6.
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(b) (4 points) Find the point on the plane 2r — y — 2z = 6 that is closest to the origin
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(¢) (4 points) Find the point on the line z =2t — 1, y =t + 2, = = —t — 6 that is closest to the origin.
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J.

(10 points) A diagonal of a cube joins a vertex to the opposite vertex. Therefore, if each edge is of
length 1, the length of the diagonal is v/3. If # is the angle between two distinct diagonals, find cos 6.
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4. Consider the paraboloid z = 2% + 2.

(a) (5 points) Find the equation of the plane that is tangent to the paraboloid at the point (1,1,2).
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(b) (5 points) The normal line to the tangent plane at the point (1,1,2) intersects the paraboloid at
another point. Find that point.
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5. Each part asks you to find a partial derivative.

(a) (3 points) If f(z,y) = 22 +y?> — xy and = rcosh, y = rsinf, find Z—f
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(c¢) (4 points) If z = f(x ) et ; £
) f(z,y) and £ =1+ 2s, y = 2r — s, find %
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6. Consider the space curve r(t) = (cost,sint, 2t3/2/3).

(a) (4 points) Find the length of the space curve from ¢ =0 to t = 7.
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(b) (3 points) Find the equation of the tangent line to the space curve at ¢ = 0.
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(¢) (3 points) If ¢ is time, what is the speed of the particle at ¢ = 277
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7. Consider the function f(r,y) =% + %

(a) (3 points) Find the unit vector in the direction of fastest increase at = = 2, y = 3.
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(b) (4 points) Find the unit vector along which the directional derivative is zero at = = 2, y = 3.
SC‘\' TA\ = CQ\\O)
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(¢) (3 points) Find the directional derivative along the unit vector u = 3i/5 + 4j/5.
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8. Consider the line (z,y.z) = (¢,2t. —2t), with ¢ being the parameter.

(a) (3 points) Find the parametric equation of another line which passes through the origin and inter-
sects the given line at 90°.
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(b) (7 points) Now consider the cone whose axis is the given line and whose vertex is at the origin. In
\leq addition, every line on the cone joining the vertex to some other point on the cone makes an angle
of 45° with the axis (or the given line). Find the equation of that cone.
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